Optical Testing — A Practical Introduction for Scientists, Engineers, Optical Designers, Students and Optical Workshop Personnel is written for those working in optics with a practical introduction to optical testing methodologies, instrumentation, and procedures, and assist in the development of their professional careers.
No optical component or system should be built without a prior specification which defines base parameters, tolerances, and system performance. Optical testing is done to verify whether the specification and performance criteria have been met. Customers need to make sure that they get what they pay for. Providers are bound both by moral and contractual obligations to provide what the customer ordered at the price quoted. Thus, the need for optical testing is incumbent upon both sides of the transaction, and both should have sufficient testing capabilities to validate the resulting optical product.
The book begins with the measurement of camera lenses using classical optical bench testing techniques: Collimators and the T-Bar Nodal Slide. Lens measurements include the determination of lens effective focal length (EFL), axial color, and F-number. Aberration measurements in the image plane include spherical aberration, coma, field curvature, astigmatism and distortion.
Aberrations determine the amount of detail that can be observed in the image. High quality imagery is of little value unless sufficient power or energy reaches the sensor. This is where basic radiometric concepts are introduced, particularly as applied to lens behavior. Power-related measurements such as lens transmission, relative illumination falloff, and veiling glare are discussed. Image formation is accomplished via glass and/or mirrored surfaces that are curved (spherical for the most part). Consequently, it is important to be able to measure the basic parameters of refractive index and radius of curvature. Depending on the application, test objects observed with the imaging system could either be finite size resolution targets or point 'star' sources.
The aberrations measured on an optical bench are recorded as image plane coordinates, i.e., axial and lateral displacements relative to a reference location. But aberrations can also be described in the exit pupil in terms of wavefronts. Hence the book also explores aberrations as described in the pupil and how pupil aberrations are connected to the point spread function. Then the phenomenon of interference is introduced (with a practical application involving the measurement of optical windows).
The specific property carrying information about pupil aberration is the optical path difference (OPD) between a reference wavefront and the aberrated wavefront. Interferometry is the methodology used to measure OPD. Variations in OPD are presented to the metrologist as fringe patterns which must be reduced and analyzed to extract aberration content.
The reality of pupil aberrations is visualized next through the auspices of the point diffraction interferometer, with an industry workhorse, the Fizeau interferometer, described and its operating principle discussed in some detail.
Using the Fizeau as our principle metrology instrument we examine a broad range of test configurations for measuring a wide variety of optical components and systems — mirror flats, spheres, aspheres, and Cassegrain telescopes. The main asphere of interest is the parabolic mirror (both on- and off-axis). The latter also includes an in-depth discussion of the null lens. Test configurations for refractors such as singlets, and multi-element camera systems are considered. Testing non-rotationally symmetric optics such as rectangular aperture cylindrical lenses and mirrors is reviewed. Alternative interferometer types such as the Twyman-Green are also examined. Finally, an exploration is made of the Fizeau interferometer as an imaging system in the context of a null lens test.
Once fringe patterns have been acquired they need to be reduced to provide salient information such as peak-to-valley, rms wavefront, and aberration content. Both manual and automatic techniques are discussed. Interferogram analysis via phase shifting is introduced. Shop tests of optical surfaces via the use of localized fringe techniques (test plates) are reviewed. A reflection from a thin parallel glass plate broaches the topic of multiple ray interference. Next, numerous indirect aberration measurement techniques are explored. Included are the classical knife-edge test, lateral shear interferometry, the Hartmann and Shack-Hartmann test. The use of a radiometric technique known as the axial intensity (or Strehl) scan is also explored.
The effect aberrations have on image quality of finite scenes can best be described by use of the modulation transfer functions (MTF). The basic MTF concept is introduced and expanded with the help of Linear Optics and Fourier Optics analytic approaches. Various MTF measurement methods are examined, including slit and knife-edge scan techniques. Also discussed is a radiometric approach known as pupil auto-correlation. For telescopes such as the Cassegrain the MTF is also influenced by light scatter from mirror surfaces due to micro-roughness. Consequently, the measurements of surface roughness by both direct and indirect methods are discussed.
Up to this point the book has concentrated on making measurements on optical systems using light based instrumentation. It concludes with a discussion of direct measurements on light fields themselves. Included are discussions on wavefront sensors, polarization and coherence, and broadband and spectral radiometrics.
Preface . . . . . . . . . .. . . . . . . . . . . . . . . . . . xv Chapter 1 Optical Testing . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Working Definition . . . . . . . . . . . . . . . . . . . 1 1.3 Hands-On . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 Measurement Error . . . . . . . . . . . . . . . . . . . .2 1.4.1 Accuracy and Repeatability. . . . . . . . . . . . . . .2 1.4.2 Calculating Error . . . . . . . . . . . . . . . . . . .2 1.4.3 Calibration . . . . . . . . . . . . . . . . . . . . . .3 1.5 The Lesson of HST . . . . . . . . . . . . . . . . . . . .3 1.6 The Journey . . . . . . . . . . . . . . . . . . . . . . .4 1.7 Instructor Note . . . . . . . . . . . . . . . . . . . . .8 Part I Optical Bench Testing . . . . . . . . . . . . . . . . . . 9 Chapter 2 Geometric Optics Review. . . . . . . . . . . . . . . . 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Paraxial Ray-Trace Equations (PRTE) . . . . . . . . . . .11 2.3 Optical Power. . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Power of Single Optical Surface . . . . . . . . . . . .13 2.3.2 Power of Two-Component System . . . . . . . . . . . . .15 2.4 Optical Power and Effective Focal Length . . . . . . . . 16 2.5 Gaussian Lens Formula . . . . . . . . . . . . . . . . . .17 2.6 Magnification. . . . . . . . . . . . . . . . . . . . . . 17 2.7 Stops and Pupils. . . . . . . . . . . . . . . . . . . . .18 2.8 F-number . . . . . . . . . . . . . . . . . . . . . . . . 19 2.9 Marginal and Chief Rays . . . . . . . . . . . . . . . . .20 2.10 Homework . . . . . . . . . . . . . . . . . . . . . . . .21 Chapter 3 Collimators . . . . . . . . . . . . . . . . . . . . . .23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Collimator Structures . . . . . . . . . . . . . . . . . .23 3.3 Collimator Light Sources. . . . . . . . . . . . . . . . .26 3.4 Setting up and Aligning a Collimator . . . . . . . . . . 30 3.4.1 Alignment Process. . . . . . . . . . . . . . . . . . . 30 3.4.2 Establishing Collimation: Autocollimation Procedure . .32 3.5 Alternative Techniques . . . . . . . . . . . . . . . . . 34 3.5.1 Beam Diameter Versus Distance. . . . . . . . . . . . . 34 3.5.2 Shear plate . . . . . . . . . . . . . . . . . . . . . .35 3.6 Aligning a Multi-element Lens to a Collimator. . . . . . 36 3.7 Homework . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 4 EFL Measurements . . . . . . . . . . . . . . . . . . . 41 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Nodal Points. . . . . . . . . . . . . . . . . . . . . . .41 4.3 T-Bar Nodal Slide (TBNS) Description . . . . . . . . . . 42 4.4 Measuring EFL via Nodal Method . . . . . . . . . . . . . 43 4.5 T-Bar Nodal Slide Calibration . . . . . . . . . . . . . .43 4.6 Measuring EFL via Lateral Magnification . . . . . . . . .45 4.7 Measuring EFL (λ) — Axial Color . . . . . . . . . . . . .46 4.8 Measuring the Entrance Pupil and F-number . . . . . . . .47 4.9 Measuring EFL Change with Temperature . . . . . . . . . .48 4.10 Some Thoughts on Measurement. . . . . . . . . . . . . . 49 Chapter 5 Aberrations Part I. . . . . . . . . . . . . . . . . . .51 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Positional Aberrations: Field Curvature and Distortion . 51 5.3 Measuring Positional Aberrations on TBNS . . . . . . . . 51 5.3.1 Measuring Field Curvature . . . . . . . . . . . . . . 51 5.3.2 Measuring Distortion. . . . . . . . . . . . . . . . . 55 5.4 Aberrations Affecting Quality of "Point Image" . . . . . 57 5.4.1 Spherical Aberration . . . . . . . . . . . . . . . . . 57 5.4.2 Coma . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.4.3 Astigmatism. . . . . . . . . . . . . . . . . . . . . . 58 5.5 Linear Hartmann Screen and Ray-Fan Plots . . . . . . . . 59 5.6 Measuring the “Point” Degrading Aberrations on TBNS . . .62 5.6.1 Measuring Spherical Aberration . . . . . . . . . . . . 62 5.6.1.1 Annular Zone Method . . . . . . . . . . . . . . .62 5.6.1.2 Minimum Blur Method . . . . . . . . . . . . . . .63 5.6.1.3 Linear Hartmann Screen . . . . . . . . . . . . . 63 5.6.1.4 Axial Intensity Method . . . . . . . . . . . . . 65 5.6.2 Coma . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.6.3 Astigmatism. . . . . . . . . . . . . . . . . . . . . . 66 5.7 Homework . . . . . . . . . . . . . . . . . . . . . . . . 67 Chapter 6 Refractive Index . . . . . . . . . . . . . . . . . . . 69 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Glass Properties . . . . . . . . . . . . . . . . . . . . 69 6.2.1 Refractive Index . . . . . . . . . . . . . . . . . . . 69 6.2.2 Dispersion . . . . . . . . . . . . . . . . . . . . . . 69 6.2.3 Glass Chart . . . . . . . . . . . . . . . . . . . . . .73 6.2.4 Partial Dispersion . . . . . . . . . . . . . . . . . . 74 6.3 Measuring Refractive Index. . . . . . . . . . . . . . . .74 6.3.1 Microscope Method. . . . . . . . . . . . . . . . . . . 74 6.3.2 Critical Angle . . . . . . . . . . . . . . . . . . . . 78 6.3.3 Brewster’s Angle . . . . . . . . . . . . . . . . . . . 80 6.3.4 Prism Refractometer . . . . . . . . . . . . . . . . . .82 6.3.4.1 Governing Equation. . . . . . . . . . . . . . . .82 6.3.4.2 Procedure for Making n(λ) Measurements . . . . . 84 6.4 Dispersion . . . . . . . . . . . . . . . . . . . . . . . 87 6.5 Homework . . . . . . . . . . . . . . . . . . . . . . . . 88 Chapter 7 Radius of Curvature . . . . . . . . . . . . . . . . . .89 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 89 7.2 Surface Sagitta ("SAG") . . . . . . . . . . . . . . . . .89 7.2.1 General Spheric Expansion . . . . . . . . . . . . . . .89 7.2.2 Surface Sag . . . . . . . . . . . . . . . . . . . . . .90 7.3 Measuring Radius of Curvature . . . . . . . . . . . . . .90 7.3.1 Eyeball Estimate . . . . . . . . . . . . . . . . . . . 90 7.3.2 Via Microscope . . . . . . . . . . . . . . . . . . . . 91 7.3.3 Via Interferometer . . . . . . . . . . . . . . . . . . 92 7.3.4 Test Plates . . . . . . . . . . . . . . . . . . . . . .94 7.3.5 Sag and the Spherometer . . . . . . . . . . . . . . . .94 7.4 Derivation of Ball Radius Correction . . . . . . . . . . 96 7.5 Measuring RoC of an Asphere. . . . . . . . . . . . . . . 99 7.6 Homework . . . . . . . . . . . . . . . . . . . . . . . . 100 Chapter 8 Image Resolution . . . . . . . . . . . . . . . . . . . 101 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 101 8.2 Air Force Resolution Target . . . . . . . . . . . . . . .101 8.3 Aerial Resolution Measured on TBNS . . . . . . . . . . . 103 8.3.1 Aerial Resolution on Best Focal Surface. . . . . . . . 104 8.3.2 Aerial Resolution on Flat Observation Surface. . . . . 104 8.4 Recorded Resolution on Flat Formats . . . . . . . . . . .105 8.5 Tangential and Radial Corrections. . . . . . . . . . . . 106 8.6 Area Weighted Average Resolution (AWAR) . . . . . . . . .110 8.7 Sensor Example: Photographic Film . . . . . . . . . . . .110 8.7.1 Film Basics . . . . . . . . . . . . . . . . . . . . . .112 8.7.2 Lens Resolution Test on Film . . . . . . . . . . . . . 114 8.8 Homework . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 9 Radiometry and Lenses . . . . . . . . . . . . . . . . .117 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 117 9.2 Radiometry Basics . . . . . . . . . . . . . . . . . . . .117 9.2.1 Intensity . . . . . . . . . . . . . . . . . . . . . . .117 9.2.2 Radiance . . . . . . . . . . . . . . . . . . . . . . . 118 9.2.3 Lambertian Radiator . . . . . . . . . . . . . . . . . .119 9.2.4 Power through a Lens . . . . . . . . . . . . . . . . . 120 9.2.5 Image Irradiance . . . . . . . . . . . . . . . . . . . 120 9.3 Image Irradiance and Lens F-number . . . . . . . . . . . 121 9.4 Diffusers. . . . . . . . . . . . . . . . . . . . . . . . 123 9.4.1 Plate Diffusers . . . . . . . . . . . . . . . . . . . .123 9.4.2 Integrating Spheres . . . . . . . . . . . . . . . . . .123 9.5 Lens Transmission Measurements. . . . . . . . . . . . . .124 9.5.1 How to Measure Transmission . . . . . . . . . . . . . .124 9.5.2 Spectral Transmission: Double-Pass Method . . . . . . .126 9.6 Relative Illumination Falloff (RIF) . . . . . . . . . . .129 9.6.1 Power Through Tilted and Shifted Apertures . . . . . . 129 9.6.2 Lenses and RIF . . . . . . . . . . . . . . . . . . . . 129 9.6.3 Measuring RIF on TBNS. . . . . . . . . . . . . . . . . 130 9.7 Veiling Glare . . . . . . . . . . . . . . . . . . . . . .133 9.7.1 Sources of Veiling Glare . . . . . . . . . . . . . . . 133 9.7.2 Measuring Veiling Glare . . . . . . . . . . . . . . . .133 9.8 Homework . . . . . . . . . . . . . . . . . . . . . . . . 134 Chapter 10 Star Tests . . . . . . . . . . . . . . . . . . . . . 137 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . .137 10.2 The PSF . . . . . . . . . . . . . . . . . . . . . . . . 137 10.3 Physical Translation of Sampling Aperture. . . . . . . .139 10.3.1 Profile Measurements . . . . . . . . . . . . . . . . 139 10.3.2 LSF Measurement . . . . . . . . . . . . . . . . . . . 143 10.3.3 Knife-Edge Distribution (KED) . . . . . . . . . . . . 143 10.4 Sampling Aperture Arrays (CCD) . . . . . . . . . . . . .145 10.5 Scans and Convolution . . . . . . . . . . . . . . . . . 146 10.6 Axial PSF Scans. . . . . . . . . . . . . . . . . . . . .151 10.7 Radial Energy Distribution (RED). . . . . . . . . . . . 153 10.8 Star Image Resolution . . . . . . . . . . . . . . . . . 153 10.9 Homework . . . . . . . . . . . . . . . . . . . . . . . .155 Part II Pupil Aberrations and Interference. . . . . . . . . . . .157 Chapter 11 Aberrations Part II . . . . . . . . . . . . . . . . . 159 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . .159 11.2 Description of a Wavefront . . . . . . . . . . . . . . .159 11.3 Interaction of Wavefronts with Optical Systems . . . . .160 11.4 Wavefront Description. . . . . . . . . . . . . . . . . .161 11.5 Image Plane and Exit Pupil Aberrations Relationship. . .166 11.6 Defocus . . . . . . . . . . . . . . . . . . . . . . . . 168 11.6.1 Derivation via Sag Equation . . . . . . . . . . . . . 168 11.6.2 Difference between W020 and Wd. . . . . . . . . . . . 169 11.6.3 Defocus and Minimum Blur . . . . . . . . . . . . . . .171 11.7 Wavefronts and Diffraction . . . . . . . . . . . . . . .171 11.8 Homework . . . . . . . . . . . . . . . . . . . . . . . .172 Chapter 12 Interference and Optical Windows . . . . . . . . . . .175 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . .175 12.2 General Interference Equation . . . . . . . . . . . . . 175 12.3 Fringe Contrast. . . . . . . . . . . . . . . . . . . . .179 12.4 Interference of Tilted Beams . . . . . . . . . . . . . .179 12.5 Window Wedge . . . . . . . . . . . . . . . . . . . . . .181 12.6 Effect of Window Wedge on Image . . . . . . . . . . . . 185 12.7 Non-Linear Windows. . . . . . . . . . . . . . . . . . . 186 12.8 Homework . . . . . . . . . . . . . . . . . . . . . . . .186 Chapter 13 Visualizing Pupil Aberrations . . . . . . . . . . . . 189 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . .189 13.2 Optical Windows and Entrance Pupil . . . . . . . . . . .189 13.2.1 Fringe Contours due to Window Reflections . . . . . . 189 13.2.2 Window Single-Pass Wavefront . . . . . . . . . . . . .190 13.2.3 Window Wavefront and Imaging . . . . . . . . . . . . .192 13.3 Exit Pupil Aberrations and the Point Diffraction .. . . 194 13.3.1 PDI Structure . . . . . . . . . . . . . . . . . . . . 194 13.3.2 Operational Principle. . . . . . . . . . . . . . . . .195 13.3.3 PDI System . . . . . . . . . . . . . . . . . . . . . .195 13.4 PDI Reference and Test-Beam Relationship . . . . . . . .197 13.4.1 Pinhole Size . . . . . . . . . . . . . . . . . . . . .197 13.4.2 PDI Transmission and Metal Film Thickness . . . . . . 198 Chapter 14 The Fizeau Interferometer. . . . . . . . . . . . . . .203 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . .203 14.2 The Fizeau Interferometer . . . . . . . . . . . . . . . 204 14.2.1 Basic Layout . . . . . . . . . . . . . . . . . . . . .204 14.2.2 Align and View Modes . . . . . . . . . . . . . . . . .204 14.2.3 Test Optic Imaging . . . . . . . . . . . . . . . . . .205 14.2.4 The Transmission Flat . . . . . . . . . . . . . . . . 206 14.2.5 Wavefront versus Optical Surface. . . . . . . . . . . 207 14.2.6 Fringe Contrast . . . . . . . . . . . . . . . . . . . 208 14.3 Sensors in the Observation Plane. . . . . . . . . . . . 209 14.4 Factory Fizeau . . . . . . . . . . . . . . . . . . . . .209 14.5 Practical Concerns . . . . . . . . . . . . . . . . . . .211 14.5.1 Mechanical and Acoustical Vibration . . . . . . . . . 212 14.5.2 Air Currents . . . . . . . . . . . . . . . . . . . . .212 14.5.3 Mounting . . . . . . . . . . . . . . . . . . . . . . .212 14.5.4 Transmission Flat Costs. . . . . . . . . . . . . . . .213 Part III Interferometer Test Configurations . . . . . . . . . . .215 Chapter 15 Test Configurations I . . . . . . . . . . . . . . . . 217 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . .217 15.2 The Null Fringe . . . . . . . . . . . . . . . . . . . . 217 15.3 Testing Flats. . . . . . . . . . . . . . . . . . . . . .217 15.3.1 Fringe Order and Piston. . . . . . . . . . . . . . . .218 15.3.2 Hill or Valley? . . . . . . . . . . . . . . . . . . . 221 15.3.3 Determining Radius of Curvature . . . . . . . . . . . 223 15.4 The Reference or Retro Flat. . . . . . . . . . . . . . .224 15.5 Window Testing in Cavity Mode. . . . . . . . . . . . . .224 15.6 Testing Spherical Surfaces. . . . . . . . . . . . . . . 226 15.6.1 The Transmission Sphere . . . . . . . . . . . . . . . 226 15.6.2 Concave Spheres . . . . . . . . . . . . . . . . . . . 226 15.6.3 The Retro Sphere. . . . . . . . . . . . . . . . . . . 228 15.6.4 Convex Spheres . . . . . . . . . . . . . . . . . . . .228 15.6.5 Radius of Curvature Determination. . . . . . . . . . .229 15.7 The Test Point . . . . . . . . . . . . . . . . . . . . .229 15.8 Homework . . . . . . . . . . . . . . . . . . . . . . . .229 Chapter 16 Test Configurations II . . . . . . . . . . . . . . . .231 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . .231 16.2 Refractors and Dispersion . . . . . . . . . . . . . . . 231 16.3 Afocal Systems . . . . . . . . . . . . . . . . . . . . .232 16.4 Testing Lenses . . . . . . . . . . . . . . . . . . . . .234 16.4.1 Object at Infinity: Photographic Lenses . . . . . . . 234 16.4.1.1 Multi-Element . . . . . . . . . . . . . . . . . 234 16.4.1.2 Testing Singlets and Achromats . . . . . . . . .235 16.4.2 Testing Finite Conjugate Lenses . . . . . . . . . . . 237 16.5 Testing Lenses Off-Axis . . . . . . . . . . . . . . . . 238 16.6 Telescopes . . . . . . . . . . . . . . . . . . . . . . .239 16.7 Retrace Error (Ray Mapping Error). . . . . . . . . . . .240 16.8 Homework . . . . . . . . . . . . . . . . . . . . . . . .243 Chapter 17 Test Configurations IIIA . . . . . . . . . . . . . . .245 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . .245 17.2 Basics of Aspheric Surfaces. . . . . . . . . . . . . . .246 17.3 Departure from Sphere. . . . . . . . . . . . . . . . . .248 17.4 Surface Normals. . . . . . . . . . . . . . . . . . . . .249 17.5 W040 versus W040N . . . . . . . . . . . . . . . . . . . 251 17.5.1 Spherical Aberration Generated by a Parabolic Mirror. 251 17.5.2 Axial and Angular Distribution . . . . . . . . . . . .252 17.6 The Null Lens . . . . . . . . . . . . . . . . . . . . . 252 17.6.1 The Offner Null Lens . . . . . . . . . . . . . . . . .253 17.6.2 Physical Embodiment of an Offner Null Lens . . . . . .254 17.6.3 Testing Parabolic Mirror at the Focal Point . . . . . 255 17.7 Homework . . . . . . . . . . . . . . . . . . . . . . . .257 Chapter 18 Test Configurations IIIB . . . . . . . . . . . . . . .259 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . .259 18.2 Null Lens Test of an OAP . . . . . . . . . . . . . . . .259 18.3 Alignment . . . . . . . . . . . . . . . . . . . . . . . 260 18.4 Test Pallet. . . . . . . . . . . . . . . . . . . . . . .260 18.5 Coarse Alignment Steps. . . . . . . . . . . . . . . . . 261 18.5.1 Coarse Interferometer Alignment . . . . . . . . . . . 264 18.5.2 Fine Alignment of OAP. . . . . . . . . . . . . . . . .268 18.6 Image Distortion . . . . . . . . . . . . . . . . . . . .270 18.7 Homework . . . . . . . . . . . . . . . . . . . . . . . .270 Chapter 19 Test Configurations IV. . . . . . . . . . . . . . . . 271 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . .271 19.2 Cylindrical Optics . . . . . . . . . . . . . . . . . . .272 19.2.1 Fiber Optic Reference (FOR) . . . . . . . . . . . . . 272 19.2.2 Cylindrical Lenses . . . . . . . . . . . . . . . . . .272 19.2.3 FOR Operating Principle. . . . . . . . . . . . . . . .273 19.2.4 Cylindrical Mirrors . . . . . . . . . . . . . . . . . 275 19.3 Convex Compound Mirrors . . . . . . . . . . . . . . . . 276 19.4 Free Electron Laser Grazer . . . . . . . . . . . . . . .276 19.4.1 X-Ray Mandrels . . . . . . . . . . . . . . . . . . . .278 19.5 Concave Compound Mirrors (Wolter Telescopes) . . . . . .282 19.6 Homework . . . . . . . . . . . . . . . . . . . . . . . .283 Chapter 20 Other Interferometers for Optical Testing. . . . . . .285 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . .285 20.2 Twyman-Green Interferometer . . . . . . . . . . . . . . 285 20.2.1 Internal Arrangement. . . . . . . . . . . . . . . . . 285 20.2.2 Quality of Internal Components . . . . . . . . . . . .287 20.2.3 LUPI Twyman-Green Interferometer . . . . . . . . . . .288 20.2.4 The Insides of a Commercial (Boxed) TGI. . . . . . . .289 20.2.5 TGI Test Configurations . . . . . . . . . . . . . . . 289 20.2.5.1 Testing Very Small Lenses with TGI . . . . . . .289 20.2.6 The MIC-1 . . . . . . . . . . . . . . . . . . . . . . 291 20.3 Shack Cube Interferometer . . . . . . . . . . . . . . . 293 20.4 Point Diffraction Interferometer (PDI) . . . . . . . . .296 20.5 Koster’s Prism Interferometer (KPI) . . . . . . . . . . 296 20.6 Homework . . . . . . . . . . . . . . . . . . . . . . . .299 Chapter 21 Interferometer as an Imaging System. . . . . . . . . .301 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . .301 21.2 Building the Fizeau Model. . . . . . . . . . . . . . . .302 21.3 An Interferometer/Null Lens/Parabolic Mirror Model . . .303 21.4 Imaging Model. . . . . . . . . . . . . . . . . . . . . .304 21.5 Revised Double-Pass Model . . . . . . . . . . . . . . . 306 21.6 Interferometer Imaging . . . . . . . . . . . . . . . . .307 21.6.1 Retrace Error . . . . . . . . . . . . . . . . . . . . 307 21.6.2 Distortion . . . . . . . . . . . . . . . . . . . . . .307 21.7 Interferometer/Null Lens/OAP System . . . . . . . . . . 308 21.8 An Empirical Test . . . . . . . . . . . . . . . . . . . 309 Part IV Collecting and Analyzing Fringe Data . . . . . . . . . . 313 Chapter 22 Fringe Analysis . . . . . . . . . . . . . . . . . . . 315 22.1 Introduction . . . . . . . . . . . . . . . . . . . . . .315 22.2 Peak-to-Valley, Average, Variance, and RMS . . . . . . .315 22.3 OPD Profiles . . . . . . . . . . . . . . . . . . . . . .318 22.4 Full Pupil Variance and RMS . . . . . . . . . . . . . . 321 22.4.1 Average Volumes under a Mountain. . . . . . . . . . . 321 22.4.2 Average Volumes under an OPD Mountain . . . . . . . . 322 22.4.3 Calculation Example . . . . . . . . . . . . . . . . . 322 22.5 Strehl Ratio . . . . . . . . . . . . . . . . . . . . . .324 22.5.1 Definition. . . . . . . . . . . . . . . . . . . . . . 324 22.5.2 Relationship to Variance . . . . . . . . . . . . . . .325 22.5.3 Numerical Example . . . . . . . . . . . . . . . . . . 326 22.5.4 Axial Location of δs . . . . . . . . . . . . . . . . .326 22.5.5 Shape of OPD Plot at δds. . . . . . . . . . . . . . . 327 22.6 Homework . . . . . . . . . . . . . . . . . . . . . . . .327 Chapter 23 Fringe Analysis II . . . . . . . . . . . . . . . . . .329 23.1 Introduction . . . . . . . . . . . . . . . . . . . . . .329 23.2 Inputting Data . . . . . . . . . . . . . . . . . . . . .329 23.2.1 Fringe Following . . . . . . . . . . . . . . . . . . .329 23.2.2 Phase Shift Interferometry (PSI) . . . . . . . . . . .332 23.2.3 Discontinuities. . . . . . . . . . . . . . . . . . . .335 23.3 Fitting Data using Polynomials . . . . . . . . . . . . .337 23.3.1 Example using Fourier Series . . . . . . . . . . . . .337 23.3.2 Zernike Polynomials . . . . . . . . . . . . . . . . . 337 23.4 Fitting Interferometric Data using Zernikes . . . . . . 340 23.4.1 Qualitative Explanation . . . . . . . . . . . . . . . 340 23.4.2 Quantitative Explanation . . . . . . . . . . . . . . .341 23.5 Sample Analysis. . . . . . . . . . . . . . . . . . . . .342 23.6 Calculating Seidel Magnitudes from the Zernikes. . . . .344 23.7 Obscured, and Non-Circular Apertures . . . . . . . . . .344 23.8 Instantaneous PSI. . . . . . . . . . . . . . . . . . . .347 Chapter 24 Test Plates and Multiple Beam Interference . . . . . .349 24.1 Introduction . . . . . . . . . . . . . . . . . . . . . .349 24.2 Optical Testing and Localized Fringes . . . . . . . . . 349 24.2.1 Understanding Localized Fringes . . . . . . . . . . . 349 24.2.2 Local Irradiance and Fringe Spacing. . . . . . . . . .350 24.2.3 Optical Contact . . . . . . . . . . . . . . . . . . . 353 24.2.4 Test Plates . . . . . . . . . . . . . . . . . . . . . 354 24.3 Interference between Multiple Rays . . . . . . . . . . .355 24.3.1 Optical Path and Phase Changes . . . . . . . . . . . .355 24.3.2 Reflection and Transmission Amplitudes at Interface . 357 24.3.3 Stokes Relations . . . . . . . . . . . . . . . . . . .359 24.3.4 Final Form for ER . . . . . . . . . . . . . . . . . . 360 24.3.5 Reflected Irradiance. . . . . . . . . . . . . . . . . 361 24.4 Homework . . . . . . . . . . . . . . . . . . . . . . . .362 Part V Indirect Test Methods . . . . . . . . . . . . . . . . . . 363 Chapter 25 Foucault Knife-Edge Test I . . . . . . . . . . . . . .365 25.1 Introduction . . . . . . . . . . . . . . . . . . . . . .365 25.2 Foucault Knife-Edge Test: Basic Description . . . . . . 365 25.3 Relating the Parameters . . . . . . . . . . . . . . . . 366 25.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . 367 25.4 The Knife-Edge and Spherical Aberration . . . . . . . . 369 25.5 Rotationally Symmetric Optic and Knife-Edge. . . . . . .372 25.6 Asymmetric Aberrations . . . . . . . . . . . . . . . . .376 25.7 Ronchi Test . . . . . . . . . . . . . . . . . . . . . . 377 Chapter 26 Foucault Knife-Edge Test II . . . . . . . . . . . . . 379 26.1 Introduction . . . . . . . . . . . . . . . . . . . . . .379 26.2 Departure from Sphere . . . . . . . . . . . . . . . . . 379 26.3 Departure from Parabola . . . . . . . . . . . . . . . . 380 26.4 Participatory Example/Problem . . . . . . . . . . . . . 381 26.4.1 Finding the Slope Profile. . . . . . . . . . . . . . .381 26.4.2 Finding the DFP Profile. . . . . . . . . . . . . . . .381 26.4.2.1 Stacking Local Tilts. . . . . . . . . . . . . . 382 26.4.2.2 Stacking Local Sticks . . . . . . . . . . . . . 383 26.4.2.3 Adding Up Areas. . . . . . . . . . . . . . . . .384 26.5 Homework . . . . . . . . . . . . . . . . . . . . . . . .385 Chapter 27 Lateral Shear Techniques . . . . . . . . . . . . . . .387 27.1 Introduction . . . . . . . . . . . . . . . . . . . . . .387 27.2 Principle of Pupil Shear . . . . . . . . . . . . . . . .388 27.3 Defocus: 1-D Math Analysis . . . . . . . . . . . . . . .388 27.4 Diffraction Gratings . . . . . . . . . . . . . . . . . .391 27.5 Pupil Shear via Grating . . . . . . . . . . . . . . . . 393 27.6 Ronchi Test as Lateral Shear . . . . . . . . . . . . . .394 27.6.1 Moiré . . . . . . . . . . . . . . . . . . . . . . . . 395 27.6.2 Orders Generated for a Focused Beam on a Ronchi . . . 397 27.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . .399 27.7 Homework . . . . . . . . . . . . . . . . . . . . . . . .400 Chapter 28 Hartmann Tests . . . . . . . . . . . . . . . . . . . .401 28.1 Introduction . . . . . . . . . . . . . . . . . . . . . .401 28.2 Determining Mirror Surface Profile. . . . . . . . . . . 401 28.2.1 Single Hole . . . . . . . . . . . . . . . . . . . . . 401 28.2.2 Linear Hartmann Plate. . . . . . . . . . . . . . . . .403 28.2.3 Rectilinear Hole Array. . . . . . . . . . . . . . . . 407 28.3 Measuring TRA using a Hartmann Plate . . . . . . . . . .408 28.4 The Shack-Hartmann Approach . . . . . . . . . . . . . . 411 28.5 Scanning Hartmann Sensor (SHAPE) . . . . . . . . . . . .414 28.6 Homework . . . . . . . . . . . . . . . . . . . . . . . .416 Chapter 29 Axial Intensity . . . . . . . . . . . . . . . . . . . 419 29.1 Introduction . . . . . . . . . . . . . . . . . . . . . .419 29.2 AIP for Unaberrated System . . . . . . . . . . . . . . .419 29.3 Diffractive Depth of Focus . . . . . . . . . . . . . . .424 29.4 AIP of a Slightly Spherically Aberrated System . . . . .425 29.5 AIP for Significant Spherical Aberration . . . . . . . .425 29.6 Using AIP to Measure Spherical Aberration . . . . . . . 426 29.7 Things That Can Affect AIP Symmetry . . . . . . . . . . 426 29.7.1 Sampling Aperture. . . . . . . . . . . . . . . . . . .426 29.7.2 F-number . . . . . . . . . . . . . . . . . . . . . . .427 29.7.3 Gaussian Beams. . . . . . . . . . . . . . . . . . . . 429 29.8 Homework . . . . . . . . . . . . . . . . . . . . . . . .430 Chapter 30 Modulation Transfer Function I . . . . . . . . . . . .431 30.1 Introduction . . . . . . . . . . . . . . . . . . . . . .431 30.2 What is Modulation? . . . . . . . . . . . . . . . . . . 431 30.3 Imaging and Convolution . . . . . . . . . . . . . . . . 433 30.4 Convolution and Fourier Transform . . . . . . . . . . . 434 30.4.1 The Delta Function . . . . . . . . . . . . . . . . . .434 30.5 The Optical Transfer Function. . . . . . . . . . . . . .436 30.6 Homework . . . . . . . . . . . . . . . . . . . . . . . .439 Chapter 31 MTF Measurement I . . . . . . . . . . . . . . . . . . 441 31.1 Introduction . . . . . . . . . . . . . . . . . . . . . .441 31.2 Slit Scanning of Finite-Area Sinusoidal Images . . . . .441 31.3 Slit and Knife-Edge Images . . . . . . . . . . . . . . .444 31.3.1 Image of a Slit . . . . . . . . . . . . . . . . . . . 444 31.3.2 Image of Knife-Edge . . . . . . . . . . . . . . . . . 446 31.4 MTF via LSF . . . . . . . . . . . . . . . . . . . . . . 448 31.5 Acquiring LSF Data. . . . . . . . . . . . . . . . . . . 449 31.6 Square Bar MTF (MTFS) . . . . . . . . . . . . . . . . . 449 31.6.1 Alternate Scan Implementation . . . . . . . . . . . . 453 31.7 Homework . . . . . . . . . . . . . . . . . . . . . . . .454 Chapter 32 MTF Measurement II. . . . . . . . . . . . . . . . . . 455 32.1 Introduction . . . . . . . . . . . . . . . . . . . . . .455 32.2 Variable Lateral Shear Interferometry . . . . . . . . . 455 32.3 Total Power within Pupil Overlap . . . . . . . . . . . .456 32.4 Auto-Correlation . . . . . . . . . . . . . . . . . . . .457 32.4.1 Basic Auto-Correlation . . . . . . . . . . . . . . . .457 32.4.2 Auto-Correlation of Circular Pupil . . . . . . . . . .458 32.5 Pupil Auto-Correlation (PAC) . . . . . . . . . . . . . .459 32.6 Connecting Pupil Auto-Correlation with Total Power Φ . .460 32.7 Pupil Auto-Correlation Interferometer (PACI) . . . . . .462 32.7.1 Kelsall Interferometer . . . . . . . . . . . . . . . .462 32.8 Pupil Auto-Correlation and the Optical Transfer Function463 32.8.1 Short Derivation . . . . . . . . . . . . . . . . . . .463 32.8.2 Example Optical Transfer Function on Circular Pupil . 465 32.8.3 Reinterpretation of Pupil Auto-Correlation. . . . . . 466 32.8.4 The Modulation Transfer Function Connection . . . . . 467 32.9 Homework . . . . . . . . . . . . . . . . . . . . . . . .467 Chapter 33 Surface Roughness . . . . . . . . . . . . . . . . . . 469 33.1 Introduction . . . . . . . . . . . . . . . . . . . . . .469 33.2 Direct Measurement of Surface Roughness. . . . . . . . .469 33.2.1 Mechanical Profilometer . . . . . . . . . . . . . . . 469 33.2.2 Optical Profilometry . . . . . . . . . . . . . . . . .470 33.3 Analysis of Profilometer Data . . . . . . . . . . . . . 472 33.3.1 Peak-to-Valley and Average . . . . . . . . . . . . . .472 33.3.2 RMS Roughness . . . . . . . . . . . . . . . . . . . . 474 33.3.3 Histogram and Gaussian Fits. . . . . . . . . . . . . .474 33.4 Surface Periodicity. . . . . . . . . . . . . . . . . . .477 33.5 Mechanical versus Optical Profilometry . . . . . . . . .481 33.6 Measuring Scattered Light. . . . . . . . . . . . . . . .482 33.6.1 Total Integrated Scatter . . . . . . . . . . . . . . .482 33.6.2 Angle Resolved Scatter (ARS) . . . . . . . . . . . . .484 33.7 Homework . . . . . . . . . . . . . . . . . . . . . . . .487 Part VI Measurement of Light Fields . . . . . . . . . . . . . . .489 Chapter 34 Measuring Light Fields I . . . . . . . . . . . . . . .491 34.1 Introduction . . . . . . . . . . . . . . . . . . . . . .491 34.2 Wavefront Sensors . . . . . . . . . . . . . . . . . . . 491 34.2.1 Direct WFS . . . . . . . . . . . . . . . . . . . . . .491 34.2.2 Indirect Wavefront Sensors . . . . . . . . . . . . . .492 34.2.2.1 Lateral Shear Interferometer WFS . . . . . . . . . .492 34.2.2.2 Hartmann-Based WFS. . . . . . . . . . . . . . . . . 494 34.2.3 Indirect WFS (Radiometric) . . . . . . . . . . . . . .494 34.2.3.1 Axial Intensity . . . . . . . . . . . . . . . . 496 34.2.3.2 Curvature Sensing . . . . . . . . . . . . . . . 497 34.2.3.3 Phase Retrieval . . . . . . . . . . . . . . . . 501 34.2.3.4 Light Level . . . . . . . . . . . . . . . . . . 503 34.3 Wavefront Calibration . . . . . . . . . . . . . . . . . 505 Chapter 35 Measuring Light Fields II: Polarization . . . . . . . 507 35.1 Introduction . . . . . . . . . . . . . . . . . . . . . .507 35.2 Measuring Pure Polarization States . . . . . . . . . . .508 35.3 The Polarization Ellipse. . . . . . . . . . . . . . . . 512 35.4 Ellipsometers Proper . . . . . . . . . . . . . . . . . .513 35.5 The Quarter-Wave Plate . . . . . . . . . . . . . . . . .515 35.6 Polarization and Wavefront Sensors . . . . . . . . . . .516 35.7 Coherence Measurements . . . . . . . . . . . . . . . . .521 35.7.1 Spatial Coherence . . . . . . . . . . . . . . . . . . 521 35.7.2 Temporal Coherence . . . . . . . . . . . . . . . . . .522 35.8 Homework . . . . . . . . . . . . . . . . . . . . . . . .525 Chapter 36 Measuring Light Fields III: Radiometrics . . . . . . .527 36.1 Introduction . . . . . . . . . . . . . . . . . . . . . .527 36.2 The Standard Lamp . . . . . . . . . . . . . . . . . . . 527 36.3 Radiometer. . . . . . . . . . . . . . . . . . . . . . . 528 36.3.1 Broadband Radiometry . . . . . . . . . . . . . . . . .529 36.3.2 Sensor Head Calibration . . . . . . . . . . . . . . . 530 36.3.3 Photometry. . . . . . . . . . . . . . . . . . . . . . 531 36.4 Gratings and Monochrometers. . . . . . . . . . . . . . .533 36.4.1 Reflection Gratings . . . . . . . . . . . . . . . . . 533 36.4.2 Blazed Grating. . . . . . . . . . . . . . . . . . . . 534 36.4.3 Monochrometers . . . . . . . . . . . . . . . . . . . .537 36.5 Spectroradiometers . . . . . . . . . . . . . . . . . . .538 36.5.1 Basic System . . . . . . . . . . . . . . . . . . . . .538 36.5.2 Order Overlap . . . . . . . . . . . . . . . . . . . . 539 36.5.3 Spectroradiometers Proper . . . . . . . . . . . . . . 540 36.5.4 Spectroradiometer Calibration. . . . . . . . . . . . .541 36.6 Energy Measurements . . . . . . . . . . . . . . . . . . 543 36.7 Radiance Measurements . . . . . . . . . . . . . . . . . 543 Chapter 37 Spectrometry . . . . . . . . . . . . . . . . . . . . .547 37.1 Introduction . . . . . . . . . . . . . . . . . . . . . .547 37.2 Spectrometer . . . . . . . . . . . . . . . . . . . . . .547 37.3 Fabry-Perot Interferometer . . . . . . . . . . . . . . .548 37.3.1 Multiple Ray Interference Transmission . . . . . . . .549 37.3.2 Fringe Sharpness . . . . . . . . . . . . . . . . . . .550 37.3.3 Spectral Resolution . . . . . . . . . . . . . . . . . 554 37.3.4 Interference (Spike) Filter . . . . . . . . . . . . . 556 37.4 Spectrophotometry. . . . . . . . . . . . . . . . . . . .557 37.4.1 Visible Spectrophotometer . . . . . . . . . . . . . . 558 37.4.2 Fourier Transform Infrared Spectrophotometer (FTIR) . 560 Chapter 38 Energy and Photographic Film in the Digital Age . . . 567 38.1 Introduction . . . . . . . . . . . . . . . . . . . . . .567 38.2 Generating the Characteristic Curve . . . . . . . . . . 568 38.2.1 Sensitometer . . . . . . . . . . . . . . . . . . . . .568 38.2.2 Densitometer . . . . . . . . . . . . . . . . . . . . .569 38.2.3 The Plot . . . . . . . . . . . . . . . . . . . . . . .570 38.3 The Nutting Model. . . . . . . . . . . . . . . . . . . .570 38.4 The Microdensitometer . . . . . . . . . . . . . . . . . 572 38.5 Film Speed and RMS Granularity . . . . . . . . . . . . .574 38.6 Film MTF. . . . . . . . . . . . . . . . . . . . . . . . 574 38.7 Film Spectral Response . . . . . . . . . . . . . . . . .575 38.8 IR Presensitization Photography . . . . . . . . . . . . 576 38.9 Format Sizes. . . . . . . . . . . . . . . . . . . . . . 578 Appendix A Answers To Selected Homework Problems . . . . . . . . 579 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 583 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
Willmann-Bell Optical Testing | |
---|---|
Attribute | Specification |
Product Code (SKU) | OTPTEST |
Universal Product Code (UPC) | n/a |
Experience Level | Intermediate |
Format | Hardback |
Pages | 604 |
Illustrations | 660 |
Dimensions | 6 by 9 inches |